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A model concept is proposed in the paper enabling description of concentration transients of 
a dissolved tracer solute in a nonideally mixed liquid batch assuming a random motion of the 
liquid. The model concept satisfactorily agrees with the experimental data. 

A general model has been proposed in the preceding communication1 for description 
of one dimensional transport of a scalar quantity in a nonideal mixer. Using the con-
cept of mutual motion of a tracer particle and fluid in the mixer the appropriate 
stochastic differential equations were written down. These equations yielded the 
diffusion equation describing the transport of concentration or temperature of the 
fluid. The application of this concept to be presented here enables the transient 
development of concentration of a tracer solute (e.g. solution of an electrolyte) 
to be described. The tracer solute is added at the onset of the process to the mechani-
cally mixed batch. 

THEORETICAL 

Let us assume that the process under consideration, i.e. the change of concentration 
of the tracer solute, will be observed in the following set-up: An impeller is located 
(Fig. 1) in a cylindrical vessel and induces axially symmetric flow of the batch with 
respect to the axis of symmetry of the vessel. The flow is random and stationary. 
At a time instant t = 0 a certain volume of the tracer solution is injected at a point 
x0 on the level of the mixed batch. The volume of the tracer solution is negligible 
with respect to the total volume of the batch and the duration of injection is negligible 
with respect to the time of homogenation of the tracer solution in the batch. 

The tracer solution is carried by the fluid and first enters the rotor region of the 
impeller to be dispersed uniformly over the horizontal plane. Next, it follows a circu-
latory motion shown schematically in Fig. 1. By this process the tracer solution 
is being dispersed more and more uniformly into the whole volume of the batch. 

• Part XLIV in the series: Studies on Mixing; Part XLIII: This Journal 40, 3781 (1975). 
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^e presence of the tracer solution is indicated by a detector located in the radial 
,tream of the fluid emerging from the rotor region of the impeller. 
I Let us suppose that the dimensions of the detector are negligible with respect to 
the size of the equipment and hence may be regarded as a point in the volume of the 
|tch. The circulatory motion of the elements of the tracer particle projected onto 
straight line drawn through the point of the detector parallel to the axis of symmetry 

'will appear as a periodic oscillation "damped" by increasing uniformity of the spread 
|f the tracer particles in the batch with superimposed random pulsations due to the 
flow of the fluid. 

In the preceding communication it was shown that on the basis of the analysis of 
the random motion of a single particle one can describe, under certain assumptions, 
the behaviour of a set of such particles, i.e. also their concentration. The concentra-
tion changes of the tracer solute characterized above shall be therefore simulated 
by describing a suitably selected single tracer particle on the mentioned straight line. 
The straight line is taken to be the x axis directed toward the bottom of the vessel. 
The origin of the * axis is at the point of intersection with the horizontal plane of 
symmetry of the impeller (Fig. 1). 

Following are the simplifying assumptions enabling quantitative description of this 
-motion: A1 The tracer particle moving within the liquid is subject to the action of 
these forces: a) force of friction, directly proportional to its velocity and opposite 

Iin direction; b) central force, induced by mutual action of the impeller and the reaction 
of the wall of the vessel, directly proportional to the position of the particle; c) random 
force, proportional to the Wiener's process2. The coefficients of proportionality for 
the above forces are constants for given conditions of mixing. 

/ 

/ air 
\ FIG. 1 

Sketch of Motion of Tracer Particle in Mixed Batch 
0 Origin of axis x (point of intersection with the 

horizontal plane of symmetry of the impeller), x0 

injection point for tracer solute, coordinate of 
position of the detector (center), point of inter-
section of axis x and bottom. 
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Note: On the basis of the above description of the spread of the tracer solute in the 
batch and the previous communication1 the force defined sub b) may be thought to 
bring about the circulatory flow of the fluid carrying the tracer solution. The force 
of friction, defined sub a) characterizes the existence of the velocity profile within 
this stream and hence the contribution of lateral mixing to the spread of the tracer 
solute while the random force sub c) represents a contribution of the turbulent trans-
port. A2 The motion of the particle with respect to liquid is negligible in comparison 
with that induced by the above dsfined random force. Note: As follows from the earlier 
considerations1 the assumption expresses the fact that molecular diffusion is negli-
gible with respect to the turbulent transport. The motion of the particle may then be 
identified with the motion of the fluid that surrounds it. A3 The velocity of particle's 
motion is initially zero. A4 The probability that the particle escapes in the course 
of the process from the system (i.e. appears outside the line segment given by x0 and 
xd) is taken to be negligibly small but non-zero with respect to the reverse process. 

With the aid of the first two assumptions the stochastic differential equations de-
scribing the motion of the tracer particle under consideration may be written as1 ,3 

dV(t) = [~aV(t) - bX(t)] dt + cdW(t) , 

= dt. (1) 

Here V and X designate velocity and position of the particle taken generally to be 
random functions of time, t. If designates Wiener's process. The symbols a, b and c 
are positive coefficients, constant under given conditions of mixing [i.e. the frequency 
of revolution of the impeller, geometrical arrangement etc.). 

The random functions in Eqs (i) and (2) may be thought to be Markov's proces-
ses4 and the appropriate transitive probability density may be written as 

f'(x, V, t\x°, v°) = 

= lim — — P{x ^ < X + Ax, V ̂  V(t) < v + AwlA'(O) = 1/(0) - v0} . 
A x - 0 Ax Av , , 
A«;-»0 (3) 

For this function one can find the following Kolmogorov's diffusion equation5 

T- + u d f ~ V {Kai + * + 2 M / ' } - 2a2a1(al +cc I) = 0 (4) dt ox ov dv 

the coefficients of which (a l5 a2 , o) are associated with the coefficients of the differen-
tial equation (1) and (2) by 

a = 2al7 b = <x\ + a\, c2 = Aa2^a] + aj) . (5) 
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With regard to the initial position (the point x 0 ) and the third assumption the initial 
condition for solving Eq. (4) may be written as 

f(x\v°) = d(x° + x0)d(v°), 

where the symbol 5{.) designates the Dirac impulse function. Using the fourth assump-
tion the boundary conditions on the limits of the finite interval need not be considered. 
Accordingly, we shall assume the usual behaviour of the probability density for the 
argument growing above all limits. Namely, the function / ' ( . ) and its first derivative 
vanish. 

It can be proven that solution of Eq. (4) under these conditions is the two-dimen-
sional normal distribution: 

p (•+ CO 
f(x, v;t)= f'(x, V; t\x°, v°) d(x° + x0) d(v°) dx° dv° = 

J J - cc 

hvv(x — 3c)2 — 2hxv(x — x) (v — v) + hxx{y — v)2 

2tt(/ I xAv - h2xv)1'2 
e x p \ ~ 

2(hxxhvv -

(7) 

the parameters of which are functions of time and the initial conditions 

x = — x 0 exp ( — a^t) [cos (oc2t) + (ai/a 2) s i n ( a 2 0 ] 

v = *o [ ( a i + a 2) / a 2] e x P ( — a i 0 sin (a2O 

hxx = (72{1 - [ e x p ( - 2 a 1 / ) / a 2 ] . 

. [a 2 + a 2 — a i c o s ( 2a 2 0 + a i a 2 sin (2a 2f)]} 

hxv = <72[a1(a2 + ocl)]ocl'] exp( —2ajf) [1 — cos (2a2?)] 

hYV = c2(af + a 2 ) {1 - [exp ( - 2 a ^ ) / a ? ] . 

. [a 2 + ctl — a 2 cos (2a2t) — a x a 2 sin (2a 2f)]} . 

W 

The motion of the tracer particle along the considered straight line is thus fully 
described. 

In the previous communication1 it was shown that the found probability density, 
/ ( . ) , is directly proportional to the scalar quantity q(x, v, t) which shall be now 
regarded to be concentration: 

q(x, v, t)fv(v, t) = kf(x, v; t) 
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/v( . ) is the marginal probability density of the funct ion V(t) and k is the proportionality 
constant. It was fur ther shown that as long as V(t) is a random function of time the 
concentration q(x, V(t), t) = Q(x, t) is also a random function of time and space. 

The expected value of this function can be found easily: 

f + 00 / • + 00 

E{Q(x, r ) } = q(x, v, t)/v(y; t) 6v = k f ( x , v; t) dv . 

Substituting into this expression for / ( . ) f rom Eq. (7) we obtain after integration 

E{Q(x, 0} = 
(2 nh x x y /2 exp 

(x - x f 

2 hxx 
i 1 1 ) 

where the quantities x and hxx are given by the first equations of the sets (8) and (9). 

In order that we may confront this result suitably with the experimental data we 
shall introduce a dimensionless concentration Z(xc , t) at the point xc, i.e. location 
of the detector (Fig. 1): 

Z(x t) = oo) ~ Q(xc, t) 

Q(xc, CX3) - Q(xc, 0) 
(22) 

and express this quantity explicitly as a function of time. 

If we exclude f rom our consideration direct injection of the tracer solute at the 
beginning of the process into the detector the value of Q{xc, 0) will always equal zero. 
The function £>(xc. oo) is independent of velocity, as may be apparent f rom the second 
expression (9), and therefore not a random function. Instead, as follows f rom Eq. (11), 
it equals 

Q(xc, oo) = l i m E{Q(x, ?)} = 
k 

(2™)1 /2 exp * c 

2(72 03) 

For the expected value of the dimensionless concentration we finally obtain by substi-
tuting f rom Eqs (11) and (13) into (12) the relation 

E{Z(xc, 0 } = 1 - E{Q(xc, t}]Q(xc, 0 0 ) = 1 - - e x p 

n 

( g 4 + a ^ y 

2>l2 
+ a; , (14) 

where the parameters a 3 and a 4 are defined by 

a 3 — Xo/(2o")1''2 , a 4 EE x c l ( 2 a y 2 . (15) 
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The expressions 

f = - x / x o, r\2 = hxJo2 (16) 

are, as follows from Eqs (8) and (9), dimensionless functions of time and the parame-
ters a t and a2 . 

Eq. (14) thus describes under the above simplifying assumptions, the dependence 
of the expected value of the dimensionless concentration on time. It contains four 
parameters a k(k = 1, . . . 4) the values of which must be determined empirically. 

EXPERIMENTAL 

Experimental set-up. The validity of Eq. (14) was tested experimentally in a perspex glass 
cylindrical vessel 0-29 m in diameter with four symmetrically located radial baffles 0-03 m wide. 
The clear liquid height was equal to the dimater of the vessel. 

Two turbine impellers of the diameter ratio dlD equal 1/3 and 1/4 were used. The frequency of 
revolution of the impellers ranged between 1-67 and 8-33 s _ 1 and was held constant to ± 2 % . The 
batch was distilled water with a small amount of sodium chloride. The temperature of the batch 
was held constant in the range 20 0 ± 0T°C. A glass cooling coil was placed in the vessel sym-
metrically around the axis of symmetry of the vessel in one of the experimental runs. 

Experimental method. The observed quantity — concentration of sodium chloride in water — 
was detected by measuring electric conductivity of the solution by the compensation method 
worked out by Landau and Prochazka6 . The samples of the concentrated solution were added by 
a syringe onto the liquid level. The time of injection did not exceed 3 s. Also the time of observation 
of the recorded quantity and preliminary processing were the same as in the already cited paper6 

with the only difference that Eq. (12) was used for calculating the dimensionless concentration 
and the recorded quantity was sampled in equidistant time intervals. 

The division of the time axis in one experimental run was always such that the number of these 
intervals, p, be always greater than 15. For Q(xc, a) in Eq. (12) we substituted the concentration 
at the time tp, i.e. its final value which practically did not change with time. 

Data processing. Each experimental run at given conditions was usually repeated 20 times, 
this means generally m realizations of the random function of time, Z(xc, t), in equidistant time 
intervals. The z-th realization (i — 1, . . . , m) at a time / j is designated as zi-}. The experimental 
estimate of the expected value E{Z(xc, is the mean of m realizations: 

and the estimate of the variance, Var{Z(xc, Zj)}, the quantity 

1 
Sf = : 08) m — 1 i= i J J 

To estimate the parameters ak in Eq. (14) we used nonlinear regression for the sequence z-
weighted by appropriate estimates of the variance sf (ref.7). The Gauss-Seidell8 iteration method 
was used for the calculation. The initial estimates of the parameters ak were determined by qua-
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litative comparison of the graphical records of the experimental courses of the sequence zj with 
that defined by Eq. (14) for a priori selected values of the parameters ak . This approach facilitated 
rapid convergence of the iteration. 

Substitution of the obtained values of ak into Eq. (14) yielded the expected values of the 
function E{Z(xc, / )} designated as Sit). 

A criterion of the fit of experimental and model data. The commonly used tests such as e.g. 
the F-test could not be used for comparison of the experimental estimates of the mean dimension-
less concentration Zj with the correspondning estimates of the expected concentrations S(t-}) 
for two reasons. First, the function, S(t^) is not linear (even approximately not) with respect to 
the parameters ak , and secondly, the function Z(xc, t) cannot be regarded as normal (not even 
approximately). As follows from Eq. (12) the latter function is not even symmetric as the con-
centration Q(xc, t) takes only positive values. 

Accordingly the approach was following: The function 5"(r) was assigned the confidence limits 
using the Tchebyschev9 nonequality in which the expected value and the variance of the function 
Z(xc, t) were replaced by their experimental estimates (Eqs (17) and (IS)). Namely: 

The value of /? was set equal to two 1 0 . A typical course of the function S(t) with the appropriate 
confidence limits and the values of z-s is shown in Fig. 2. 

In accord with Eq. (19) it was assumed that the model concept agrees with sufficient accuracy 
with the experimental data unless the ratio of the values z-} at given experimental conditions 
satisfying the nonequality in the brackets on the left hand side of the last expression is smaller 
than 1 — l//?2 (i.e. for the chosen /? smaller than 75%). 

(19) 

® 

8 

G 

18 0 2 3 0 6 12 

FIG. 2 

Typical Course of Fucntion S(t) Parameter a 2 as a Function of Frequency of 
Revolution of Impeller 

FIG. 3 

Function S(t), confidence 
limits, o experimentally determined means 
I ; time t in s. 

© Did = 3, cooling coil; O Did = 3, no 
coil; © Did — 4, no coil, • values of similarly 
defined parameter1 1 characterizing circula-
tion of a tracer particle in the batch D/d = 
= 3, no coil. 
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Note: Replacement of the probability characteristics in the nonequalities (79) by their estimates 
is clearly incorrect and impairs the reliability of the given method of comparison. This reliability 
apparently increases with the number of realizations, m. 

D I S C U S S I O N 

The model presented above, just like any other model, is capable of describing the 
investigated process only to some extent, or within a certain accuracy. The goodness 
of fit as a rule deteriorates with the simplification of the model. From this viewpoint 
it is possible to formulate a sequence of individual concepts simplifying the real 
situation: 

1) The use of the continuous Markov's processes for description of the examined 
process leads to the partial differential equation of the parabolic type. 

2) The considerations regarding the use of the unidimensional model (with respect 
to spatial coordinates) enables the number of the variables in the above equation 
to be reasonably decreased. 

3) The assumption neglecting molecular diffusion (assumption A2) further simplifies 
the differential equation. 

4) The assumptions regarding the acting forces (assumptions Ala, b, c) determine 
the form of the coefficients in this equation permiting thus an analytical solution to be 
obtained. 

5) The assumptions regarding the initial and the boundary conditions (A3 and A4) 
confine on one hand the number of parameters of the solution and, on the other hand 
permit the fundamental solution to be obtained, i.e. relatively simple form of the resul-
ting equation. 

Such extensive set of simplifying assumptions can, of course, lead at best to a semi-
empirical result which must be tested under various experimental conditions. Never-
theless, it will be shown that certain physical meaning following from the model re-
mains preserved. 

As has been mentioned, the motion of the tracer solute in the batch is simulated 
by unidimensional damped oscillation superimposed by random pulsations characte-
rized by the last term on the right hand side of Eq. (/). With respect to the second 
of Eq. (5) the parameter a2 is angular frequency of this oscillation as may be readily 
apparent from Eqs (2) and (2) if the last term is omitted. The parameter oe2 thus cha-
racterizes the circulation of the tracer solute together with the batch within the system. 
It may be therefore assumed that a2 will depend on the conditions causing the circu-
lation, i.e. in the first place the frequency of revolution of the impeller. As it further 
follows from Eqs (8) and (9) physical dimension of a2 is time raised to minus first 
power. From comparison with the dimension of the frequency of revolution of the 
impeller it can be speculated that a2 is proportional to n. 
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As may be seen from Fig. 3 the experimental results confirm this speculation and 
indicate effects of other factors too, which stimulate the circulation: Increasing size 
of the impeller and the presence of the cooling coil within the system which acts as 
a stream directing device. 

From this standpoint appears also as remarkable the result of comparison with 
experimental measurement of the circulation of liquid in a similar apparatus by means 
of a tracer particle11 . The parameter a> in the cited paper has been introduced on the 
basis of a similar but simpler model concept as that in this work characterizing the 
circulation of the tracer particle and hence the liquid. Its values were plotted also in 
Fig. 3 as a function of the frequency of revolution of the impeller and well agree with 
the corresponding values of the parameter a2 . 

This fact, although so far verified in a rather narrow region, supports the consi-
deration of possible description of the transfer of scalar quantities on the basis of in-
dependent experiments using tracer particles. 

The agreement between the proposed function, Eq. (14), and the experimental data 
for 15 experimental conditions of this work is evidenced, provided that we accept 
the criterion proposed in the preceding paragraph, by the fact that 89% of the expe-
rimental data falls within the confidence limits calculated f rom Eq. (19). In none 
of the experimental conditions used did this fraction drop below the chosen value 
of 75%. 

Note: The results for all experimental conditions were plotted by a computer and 
these plots qualitatively fully confirm the above facts. Typical such plot is shown in 
Fig. 2. 

It can be thus concluded that although the experiments represent only a first stage 
of testing, the proposed general approach1 seems prospective for description of the 
transfer of a scalar quantity in a nonideal mixer under a random character of the 
flow of the batch. 

The authors wish to thank Mrs L. Formanova for careful experimenting and evaluation of the 
data. 

LIST OF SYMBOLS 

a coefficient of friction force (s~ 1) 
b coefficient of central force (s~ ' ) 
c coefficient of random force (m s ~ 3 ' 2 ) 
D diameter of vessel (m) 
d diameter of impeller (m) 
/ probability density 
h second central moment 
k proportionality constant in Eq. (10) (kg m ~ 2 ) 
m number of realization of random function 
n frequency of revolution of impeller ( s - 1 ) 
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p number of time intervals in a single experimental run 
Q volume concentration (random function) (kg m - 3 ) 
q volume concentration (kg m - 3 ) 
S estimate of expected value of dimensionless concentration 
s2 experimental estimate of variance 
t time (s) 
V velocity of tracer particle (random function) (m s - 1 ) 
v velocity (m s~ *) 
W Wiener's process (random function) (s 1 / 2 ) 
X position of tracer particle (random function) (m) 
.v coordinate of position (m) 
Z dimensionless concentration (random function) 
z realization of dimensionless concentration 
a model parameter 

constant of significance level 
<5 Dirac impulse function 
a 2 stationary variance of position of tracer particle (m2) 

Subscripts 

c detector 
d bottom of vessel 
/ sequence index of realization of random function 
j element of sequence of time intervals 
k sequence index of parameter alpha 
o injection point 
p last element of sequence of time intervals 
x position of tracer particle 
v velocity of tracer particle 
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